2010 - Linear Motion Question

1. (a) A car is travelling at a uniform speed of $14 \mathrm{~ms}^{-1}$ when the driver notices a traffic light turning red 98 m ahead.

Find the minimum constant deceleration required to stop the car at the traffic light,
(i) if the driver immediately applies the brake
(ii) if the driver hesitates for 1 second before applying the brake.
(b) A particle passes P with speed $20 \mathrm{~ms}^{-1}$ and moves in a straight line to Q with uniform acceleration.

In the first second of its motion after passing P it travels 25 m .
In the last 3 seconds of its motion before reaching Q it travels $\frac{13}{20}$ of $|P Q|$.
Find the distance from P to Q.

$$
2010
$$

0.1

(i)

$$
\begin{array}{ll}
u=14 & v^{2}=u^{2}+2 a s \\
v=0 & (0)^{2}=(14)^{2}+2(a)(98) \\
a=? & 0=196+19 a \\
s=98 & -196=196 a \\
T=- & -1-s^{-2}=a
\end{array}
$$

(ii) AfTG I SEC AT lGTIS THE CRL IS ELOJER 70 THE LIGHTS $O 4$ lim. SO THE DIST. IS 84 m

$$
\begin{array}{ll}
u=14 & v^{2}=u^{2}+2 a s \\
v=0 & (0)^{2}=(14)^{2}+2(a)(84) \\
a=? & 0=196+168(a) \\
s=84 & -196=168(a) \\
T=- & -1.167-s^{-2}=a
\end{array}
$$

(b)

$$
P \rightarrow A
$$

$u=20$
$\quad S=u T+{ }_{2} a T^{2}$
$v=-$
$25=20(1)+\frac{1}{2}(a)(1)^{2}$
$a=a$
$25=20+\frac{1}{2}(a)$
$S=25$
$5=\frac{1}{2} a$
$T=1$
$10 n 5^{-2}=a$

Teial Distance $|P Q|=x$
TOMA TIME $=T$

$$
\begin{array}{ll}
u=20 & S=u T+2 a T^{2} \\
v=- & X=20 T+i(10)(T)^{2} \\
a=10 & X=20 T+5 T^{2} \\
S=X & \\
T=T &
\end{array}
$$

Lats 3 sec. from ceo:

$$
\begin{array}{ll}
u=20 & S=c T+r_{2} 4 T^{2} \\
v=? & \frac{7}{20} x=20(T-3)+12(10)(T-3)^{2} \\
a=10 & \frac{7}{20} x=20 T-60+S\left(T^{2}-6 T+C\right) \\
S=\frac{7}{20} x & \frac{7}{20} x=207-60+5 T^{2}-30 T+45 \\
T=T-3 & \frac{7}{20} x=5 T^{2}-10 T-15
\end{array}
$$

$$
\therefore \frac{7}{20}\left(20 T+S T^{2}\right)=5 T^{2}-10 T-15(x 20)
$$

$$
7\left(20 T+5 T^{2}\right)-100 T^{2}-200 T-300
$$

$$
140 T+35 T^{2}=100 T^{2}-200 T-300
$$

$$
0=657^{2}-3407-300(\div 5)
$$

$$
0=13 T^{2}-68 T-60
$$

$$
C=(13 T+10)(T-6)
$$

$$
T=-\frac{10}{13}
$$

so, $\quad x=20(6)+5(6)^{2}$

$$
x=120+5(36)=300 m
$$

